
Excerpted from Professional Search Engine Optimization with ASP.NET: A Developer's Guide to SEO

URL Rewriting Using
ISAPI_Rewrite

by Cristian Darie and Jaimie Sirovich

“Click me!” If the ideal URL could speak, its speech would resemble the communication of an
experienced salesman. It would grab your attention with relevant keywords and a call to action; and it
would persuasively argue that one should choose it instead of the other one. Other URLs on the page
would pale in comparison.

URLs are more visible than many realize, and a contributing factor in CTR. They are often cited
directly in copy, and they occupy approximately 20% of the real estate in a given search engine result
page. Apart from “looking enticing” to humans, URLs must be friendly to search engines. URLs
function as the “addresses” of all content in a web site. If confused by them, a search engine spider may
not reach some of your content in the first place. This would clearly reduce search engine friendliness.

So let’s enumerate all of the benefits of placing keywords in URLs:

 1. Doing so has a small beneficial effect on search engine ranking in and of itself.

 2. The URL is roughly 20% of the real estate you get in a SERP result. It functions as a call to action
and increases perceived relevance.

 3. The URL appears in the status bar of a browser when the mouse hovers over anchor text that
references it. Again—it functions as a call to action and increases perceived relevance.

 4. Keyword-based URLs tend to be easier to remember than ?ProductID=5&CategoryID=2 .

 5. Query keywords, including those in the URL, are highlighted in search result pages.

 6. Often, the URL is cited as the actual anchor text, that is:

 http://w ww.example.com/foo.html

 Obviously, a user is more likely to click a link to a URL that contains relevant keywords, than a
link that does not. Also, because keywords in anchor text are a decisive ranking factor, having
keywords in the URL-anchor-text will help you rank better for “foos.”

To sum up these benefits in one phrase:

Keyword-rich URLs are more aesthetically pleasing and more visible, and are likely
to enhance your CTR and search engine rankings.

Implementing URL Rewriting
The hurdle we must overcome to support keyword-rich URLs like those shown earlier is that they don’t
actually exist anywhere in your web site. Your site still contains a script—named, say,
Product.aspx —which expects to receive parameters through the query string and generate content
depending on those parameters. This script would be ready to handle a request such as this:

http://www.example.com/Product.aspx?ProductID=123

but your web server would normally generate a 404 error if you tried any of the following:

http://www.example.com/Products/123.html
http://www.example.com/my-super-product.html

URL rewriting allows you to transform the URL of such an incoming request (which we’ll call the
original URL) to a different, existing URL (which we’ll call the rewritten URL), according to a defined
set of rules. You could use URL rewriting to transform the previous nonexistent URLs to
Product.aspx?ProductID=123 , which does exist.

If you happen to have some experience with the Apache web server, you probably know that it ships by
default with the mod_rewrite module, which is the standard way to implement URL rewriting in the
LAMP (Linux/Apache/MySQL/PHP) world. That is covered in the PHP edition of this book.

Unfortunately, IIS doesn’t ship by default with such a module. IIS 7 contains a number of new features
that make URL rewriting easier, but it will take a while until all existing IIS 5 and 6 web servers will be
upgraded. Third-party URL-rewriting modules for IIS 5 and 6 do exist, and also several URL-rewriting
libraries, hacks, and techniques, and each of them can (or cannot) be used depending on your version
and configuration of IIS, and the version of ASP.NET. In this chapter we try to cover the most relevant
scenarios by providing practical solutions.

To understand why an apparently easy problem—that of implementing URL rewriting—can become so
problematic, you first need to understand how the process really works. To implement URL rewriting,
there are three steps:

 1. Intercept the incoming request. When implementing URL rewriting, it’s obvious that you need
to intercept the incoming request, which usually points to a resource that doesn’t exist on your
server physically. This task is not trivial when your web site is hosted on IIS 6 and older. There
are different ways to implement URL rewriting depending on the version of IIS you use (IIS 7
brings some additional features over IIS 5/6), and depending on whether you implement rewriting
using an IIS extension, or from within your ASP.NET application (using C# or VB.NET code). In
this latter case, usually IIS still needs to be configured to pass the requests we need to rewrite to
the ASP.NET engine, which doesn’t usually happen by default.

 2. Associate the incoming URL with an existing URL on your server. There are various
techniques you can use to calculate what URL should be loaded, depending on the incoming
URL. The “real” URL usually is a dynamic URL.

 3. Rewrite the original URL to the rewritten URL. Depending on the technique used to capture
the original URL and the form of the original URL, you have various options to specify the real
URL your application should execute.

The result of this process is that the user requests a URL, but a different URL actually serves the
request. The rest of the article covers how to implement these steps using ISAPI_Rewrite by
Helicontech. For background information on how IIS processes incoming requests, we recommend
Scott Mitchell’s article “How ASP.NET Web Pages are Processed on the Web Server,” located at
http://aspnet.4guysfromrolla.com/articles/011404-1. aspx .

URL Rewriting with ISAPI_Rewrite v2
Using a URL rewriting engine such as Helicon’s ISAPI_Rewrite has the following advantages over
writing your own rewriting code:

* Simple implementation. Rewriting rules are written in configuration files; you don’t need to write
any supporting code.

* Task separation. The ASP.NET application works just as if it was working with dynamic URLs.
Apart from the link building functionality, the ASP.NET application doesn’t need to be aware of
the URL rewriting layer of your application.

* You can easily rewrite requests for resources that are not processed by ASP.NET by default, such
as those for image files, for example.

To process incoming requests, IIS works with ISAPI extensions, which are code libraries that process
the incoming requests. IIS chooses the appropriate ISAPI extension to process a certain request
depending on the extension of the requested file. For example, an ASP.NET-enabled IIS machine will
redirect ASP.NET-specific requests (which are those for .aspx files, .ashx files, and so on), to the
ASP.NET ISAPI extension, which is a file named aspnet_isapi.dll .

Figure 3-3 describes how an ISAPI_Rewrite fits into the picture. Its role is to rewrite the URL of the
incoming requests, but doesn’t affect the output of the ASP.NET script in any way.

At first sight, the rewriting rules can be added easily to an existing web site, but in
practice there are other issues to take into consideration. For example, you’d also
need to modify the existing links within the web site content. This is covered in
Chapter 4 of Professional Search Engine Optimization with ASP.NET: A
Developer’s Guide to SEO.

Figure 3-3

ISAPI_Rewrite allows the programmer to easily declare a set of rules that are applied by IIS on-the-fly
to map incoming URLs requested by the visitor to dynamic query strings sent to various ASP.NET
pages. As far as a search engine spider is concerned, the URLs are static.

The following few pages demonstrate URL rewriting functionality by using Helicon’s ISAPI_Rewrite
filter. You can find its official documentation at http://www.isapirewrite.com/docs/ . Ionic’s
ISAPI rewriting module has similar functionality.

In the first exercise we’ll create a simple rewrite rule that translates my-super-product.html to
Product.aspx?ProductID=123 . This is the exact scenario that was presented in Figure 3-3.

The Product.aspx Web Form is designed to simulate a real product page. The script receives a query
string parameter named ProductID , and generates a very simple output message based on the value of
this parameter. Figure 3-4 shows the sample output that you’ll get by loading
http://seoasp/Product.aspx?ProductID=3 .

Figure 3-4

In order to improve search engine friendliness, we want to be able to access the same page through a
static URL: http://seoasp/my-super-product.html . To implement this feature, we’ll use—
you guessed it!—URL rewriting, using Helicon’s ISAPI_Rewrite.

As you know, what ISAPI_Rewrite basically does is to translate an input string (the URL typed by your
visitor) to another string (a URL that can be processed by your ASP.NET code). In this exercise we’ll
make it rewrite my-super-product.html to Product.aspx?ProductID=123 .

This article covers ISAPI_Rewrite version 2. At the moment of writing,
ISAPI_Rewrite 3.0 is in beta testing. The new version comes with an updated syntax
for the configuration files and rewriting rules, which is compatible to that of the
Apache mod_rewrite module, which is the standard rewriting engine in the Apache
world. Please visit Cristian’s web page dedicated to this book,
http://www.cristiandarie.ro/seo-asp/, for updates and additional
information regarding the following exercises.

Exercise: Using Helicon’s ISAPI_Rewrite
 1. The first step is to install ISAPI_Rewrite. Navigate to

http://www.helicontech.com/download.htmand download ISAPI_Rewrite Lite (freeware). The
file name should be something like isapi_rwl_x86.msi . At the time of writing, the full (not
freeware) version of the product comes in a different package if you’re using Windows Vista and
IIS 7, but the freeware edition is the same for all platforms.

 2. Execute the MSI file you just downloaded, and install the application using the default options all
the way through.

If you run into trouble, you should visit the Installation section of the product’s
manual, at http://www.isapirewrite.com/docs/#install. If you run
Windows Vista, you need certain IIS modules to be installed in order for
ISAPI_Rewrite to function. If you configured IIS as shown in Chapter 1 of the book
Professional Search Engine Optimization with ASP.NET: A Developer's Guide to
SEO, you already have everything you need, and the installation of ISAPI_Rewrite
should run smoothly.

 3. Make sure your IIS web server is running and open the http://seoasp/ web site using Visual
Web Developer. (Code samples for this demo site are available from Wrox at
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0470131470,descCd-
download_code.html.)

 4. Create a new Web Form named Product.aspx in your project, with no code-behind file or
Master Page. Then modify the generated code as shown in the following code snippet.
(Remember that you can have Visual Web Developer generate the Page_Load signature for you
by switching to Design view, and double-clicking an empty area of the page or using the
Properties window.)

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi tional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitiona l.dtd">

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 // retrieve the product ID from the query strin g
 string productId = Request.QueryString["Product ID"];

 // use productId to customize page contents
 if (productId != null)
 {
 // set the page title
 this.Title += ": Product " + productId;

 // display product details
 message.Text =
 String.Format("You selected product #{0}. G ood choice!", productId);
 }
 else
 {
 // display product details
 message.Text = "Please select a product from our catalog.";
 }

 }
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>ASP.NET SEO Shop</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:Literal runat="server" ID="message" />
 </form>
</body>
</html>

 5. Test your Web Form by loading http://seoasp/Product.aspx?ProductID=3 . The
result should resemble Figure 3-4.

 6. Let’s now write the rewriting rule. Open the Program
Files/Helicon/ISAPI_Rewrite/httpd.ini file (you can find a shortcut to this file in
Programs), and add the following highlighted lines to the file. Note the file is read-only by
default. If you use Notepad to edit it, you’ll need to make it writable first.

[ISAPI_Rewrite]

Translate /my-super.product.html to /Product.aspx ?ProductID=123

RewriteRule /̂my-super-product\.html$ /Product.aspx ?ProductID=123

 7. Switch back to your browser again, and this time load http://seoasp/my-super-
product.html . If everything works as it should, you should get the output that’s shown in
Figure 3-5.

Figure 3-5

Congratulations! You’ve just written your first rewrite rule using Helicon’s ISAPI_Rewrite. The free
edition of this product only allows server-wide rewriting rules, whereas the commercial edition would
allow you to use an application-specific httpd.ini configuration file, located in the root of your web
site. However, this limitation shouldn’t affect your learning process.

The exercise you’ve just finished features a very simplistic scenario, without much practical value—at
least compared with what you’ll learn next! Its purpose was to install ISAPI_Rewrite, and to ensure
your working environment is correctly configured.

You started by creating a very simple ASP.NET Web Form that takes a numeric parameter from the
query string. You could imagine this is a more involved page that displays lots of details about the
product with the ID mentioned by the ProductID query string parameter, but in our case we’re simply
displaying a text message that confirms the ID has been correctly read from the query string.

Product.aspx is indeed very simple! It starts by reading the product ID value:

 protected void Page_Load(object sender, EventArgs e)
 {
 // retrieve the product ID from the query string
 string productId = Request.QueryString["ProductID"];

Next, we verify if the value we just read is null . If that is the case, then ProductID doesn’t exist as a
query string parameter. Otherwise, we display a simple text message, and update the page title, to
confirm that ProductID was correctly read:

 // use productId to customize page contents
 if (productId != null)
 {
 // set the page title
 this .Title += ": Product " + productId;

 // display product details
 message.Text =
 String .Format("You selected product #{0}. Good choice!" , productId);

 }
 else
 {
 // display product details
 message.Text = "Please select a product from our catalog.";
 }

URL Rewriting and ISAPI_Rewrite
As Figure 3-3 describes, the Product.aspx page is accessed after the original URL
has been rewritten. This explains why Request.QueryString["ProductID"]
reads the value of ProductID from the rewritten version of the URL. This is helpful,
because the script works fine no matter if you accessed Product.aspx directly, or if
the initial request was for another URL that was rewritten to Product.aspx .

The Request.QueryString collection, as well as the other values you can read
through the Request object, work with the rewritten URL. For example, when
requesting my-super-product.html in the context of our exercise,
Request.RawUrl will return /Product.aspx?ProductID=123 .

The rewriting engine allows you to retrieve the originally requested URL by saving its
value to a server variable named HTTP_X_REWRITE_URL. You can read this value
through Request.ServerVariables["HTTP_X_REWRITE_URL"] .This is helpful
whenever you need to know what was the original request initiated by the client.

The Request class offers complete details about the current request. The following
table describes the most commonly used Request members. You should visit the
documentation for the complete list, or use IntelliSense in Visual Web Developer to
quickly access the class members.

Server VariableServer VariableServer VariableServer Variable DescriptionDescriptionDescriptionDescription

Request.RawURL Returns a string representing the URL of the request
excluding the domain name, such as
/Product.aspx?ID=123 . When URL rewriting is
involved, RawURL returns the rewritten URL.

Request.Url Similar to Request.RawURL , except the return value
is a Uri object, which also contains data about the
request domain.

Request.PhysicalPath Returns a string representing the physical path of
the requested file, such as
C:\seoasp\Product.aspx .

Request.QueryString Returns a NameValueCollection object that
contains the query string parameters of the request.
You can use this object’s indexer to access its
values by name or by index, such as in
Request.QueryString[0] or
Request.QueryString[ProductID] .

Request.Cookies Returns a NameValueCollection object containing
the client’s cookies.

Request.Headers Returns a NameValueCollection object containing

the request headers.

Request.ServerVariables Returns a NameValueCollection object containing
IIS variables.

Request.ServerVariables[H
TTP_X_REWRITE_URL]

Returns a string representing the originally
requested URL, when the URL is rewritten by
Helicon’s ISAPI_Rewrite or IIRF (Ionic ISAPI
Rewrite).

After testing that Product.aspx works when accessed using its physical name
(http://seoasp/Product.aspx?ProductID=123), we moved on to access this same script, but
through a URL that doesn’t physically exist on your server. We implemented this feature using
Helicon’s ISAPI_Rewrite.

As previously stated, the free version of Helicon’s ISAPI_Rewrite only supports server-wide rewriting
rules, which are stored in a file named httpd.ini in the product’s installation folder (\Program
Files\Helicon\ISAPI_Rewrite). This file has a section named [ISAPI_Rewrite] , usually at
the beginning of the file, which can contain URL rewriting rules.

We added a single rule to the file, which translates requests to /my-super-product.html to
/Product.aspx?ProductID=123 . The line that precedes the RewriteRule line is a comment;
comments are marked using the # character at the beginning of the line, and are ignored by the parser:

Translate my-super.product.html to /Product.aspx? ProductID=123
RewriteRule /̂my-super-product\.html$ /Product.aspx ?ProductID=123

In its basic form, RewriteRule takes two parameters. The first parameter describes the original URL
that needs to be rewritten, and the second specifies what is should be rewritten to. The pattern that
describes the form of the original URL is delimited by ̂ and $, which mark the beginning and the end
of the matched URL. The pattern is written using regular expressions, which you learn about in the next
exercise.

In case you were wondering why the .html extension in the rewrite rule has been written as
\.html, we will explain it now. In regular expressions—the programming language used to
describe the original URL that needs to be rewritten—the dot is a character that has a special
significance. If you want that dot to be read as a literal dot, you need to escape it using the
backslash character. As you’ll learn, this is a general rule with regular expressions: when special
characters need to be read literally, they need to be escaped with the backslash character (which is
a special character in turn—so if you wanted to use a backslash, it would be denoted as \\).

At the end of a rewrite rule you can also add one or more flag arguments, which affect the rewriting
behavior. For example, the [L] flag, demonstrated in the following example, specifies that when a
match is found the rewrite should be performed immediately, without processing any further
RewriteRule entries:

RewriteRule /̂my-super-product\.html$ /Product.aspx ?ProductID=123 [L]

These arguments are specific to the RewriteRule command, and not to regular expressions in
general. Table 3-1 lists the possible RewriteRule arguments. The rewrite flags must always be placed
in square brackets at the end of an individual rule.

Table 3Table 3Table 3Table 3----1111

RewriteRule Option Significance Description

I Ignore case The regular expression of the RewriteRule
and any corresponding RewriteCond
directives is performed using case-insensitive
matching.

F Forbidden In case the RewriteRule regular expression
matches, the web server returns a 404 Not
Found response, regardless of the format
string (second parameter of RewriteRule)
specified. Read Chapter 4 for more details
about the HTTP status codes.

L Last rule If a match is found, stop processing further
rules.

N Next iteration Restarts processing the set of rules from the
beginning, but using the current rewritten URL.
The number of restarts is limited by the value
specified with the RepeatLimit directive.

NS Next iteration of the
same rule

Restarts processing the rule, using the
rewritten URL. The number of restarts is limited
by the value specified with the RepeatLimit
directive, and is calculated independently of the
number of restarts counted for the N directive.

P Proxy Immediately passes the rewritten URL to the
ISAPI extension that handles proxy requests.
The new URL must be a complete URL that
includes the protocol, domain name, and so on.

R Redirect Sends a 302 redirect status code to the client
pointing to the new URL, instead of rewriting
the URL. This is always the last rule, even if
the L flag is not specified.

RP Permanent redirect The same as R, except the 301 status code is
used instead.

U Unmangle log Log the new URL as it was the originally
requested URL.

O Normalize Normalize the URL before processing by
removing illegal characters, and so on, and
also deletes the query string.

CL Lowercase Changes the rewritten URL to lowercase.

CU Uppercase Changes the rewritten URL to uppercase.

Also, you should know that although RewriteRule is arguably the most important directive that you
can use for URL rewriting with Helicon’s ISAPI_Rewrite, it is not the only one. Table 3-2 quickly
describes a few other directives. Please visit the product’s documentation for a complete reference.

Table 3Table 3Table 3Table 3----2222

Directive Description

RewriteRule This is the directive that allows for URL rewriting.

RewriteHeader A generic version of RewriteRule that can rewrite any HTTP
headers of the request. RewriteHeader URL is the same as
RewriteRule .

RewriteProxy Similar to RewriteRule , except it forces the result URL to be
passed to the ISAPI extension that handles proxy requests.

RewriteCond Allows defining one or more conditions (when more
RewriteCond entries are used) that must be met before the
following RewriteRule , RewriteHeader , or RewriteProxy
directive is processed.

Introducing Regular Expressions
Before you can implement any really useful rewrite rules, it’s important to learn about regular
expressions. We’ll teach them now, while discussing ISAPI_Rewrite, but regular expressions will also
be needed when implementing other URL-related tasks, or when performing other kinds of string
matching and parsing—so pay attention to this material.

Many love regular expressions, whereas others hate them. Many think they’re very hard to work with,
whereas many (or maybe not so many) think they’re a piece of cake. Either way, they’re one of those
topics you can’t avoid when URL rewriting is involved. We’ll try to serve a gentle introduction to the
subject, although entire books have been written on the subject. The Wikipedia page on regular
expressions is great for background information
(http://en.wikipedia.org/wiki/Regular_expression).

Appendix A of this book is a generic introduction to regular expressions. You
should read it if you find that the theory in the following few pages—which is a fast-
track introduction to regular expressions in the context of URL rewriting—is too
sparse. For comprehensive coverage of regular expressions we recommend Andrew
Watt’s Beginning Regular Expressions (Wrox, 2005).

A regular expression (sometimes referred to as a regex) is a special string that describes a text pattern.
With regular expressions you can define rules that match groups of strings, extract data from strings,
and transform strings, which enable very flexible and complex text manipulation using concise rules.
Regular expressions aren’t specific to ISAPI_Rewrite, or even to URL rewriting in general. On the
contrary, they’ve been around for a while, and they’re implemented in many tools and programming
languages, including the .NET Framework—and implicitly ASP.NET.

To demonstrate their usefulness with a simple example, we’ll assume your web site needs to rewrite
links as shown in Table 3-3.

Table 3Table 3Table 3Table 3----3333

Original Original Original Original URLURLURLURL Rewritten URLRewritten URLRewritten URLRewritten URL

Products/P1.html Product.aspx?ProductID=1

Products/P2.html Product.aspx?ProductID=2

Products/P3.html Product.aspx?ProductID=3

Products/P4.html Product.aspx?ProductID=4

… …

If you have100,000 products, without regular expressions you’d be in a bit of a trouble, because you’d
need to write just as many rules—no more, no less. You don’t want to manage a configuration file with
100,000 rewrite rules! That would be unwieldy.

However, if you look at the Original URL column of the table, you’ll see that all entries follow the
same pattern. And as suggested earlier, regular expressions can come to rescue! Patterns are useful
because with a single pattern you can match a theoretically infinite number of possible input URLs, so
you just need to write a rewriting rule for every type of URL you have in your web site.

In the exercise that follows, we’ll use a regular expression that matches Products/P n.html , and
we’ll use ISAPI_Rewrite to translate URLs that match that pattern to
Product.aspx?ProductID= n. This will implement exactly the rules described in Table 3-3.

Exercise: Working with Regular Expressions
 1. Open the httpd.ini configuration file and add the following rewriting rule to it.

[ISAPI_Rewrite]

Defend your computer from some worm attacks
RewriteRule .*(?:global.asa|default\.ida|root\.exe| \.\.).* . [F,I,O]

Translate my-super.product.html to /Product.aspx? ProductID=123
RewriteRule /̂my-super-product\.html$ /Product.aspx ?ProductID=123

Rewrite numeric URLs
RewriteRule /̂Products/P([0-9]+)\.html$ /Product.as px?ProductID=$1 [L]

 2. Switch back to your browser, and load http://seoasp/Products/P1.html . If everything
works as planned, you will get the output that’s shown in Figure 3-7.

Figure 3-7

 3. You can check that the rule really works, even for IDs formed of more digits. Loading
http://seoasp/Products/P123456.html would give you the output shown in Figure 3-
8.

Figure 3-8

Note that by default, regular expression matching is case sensitive. So the regular expression in your
RewriteRule directive will match /Products/P123.html, but will not match
/products/p123.html, for example. Keep this in mind when performing your tests. To make the
matching case sensitive, you need to use the [I] RewriteRule flag, as you’ll soon learn.

Congratulations! The exercise was quite short, but you’ve written your first “real” regular expression!
Let’s take a closer look at your new rewrite rule:

RewriteRule /̂Products/P([0-9]+)\.html$ /Product.as px?ProductID=$1 [L]

If this is your first exposure to regular expressions, it must look scary! Just take a deep breath and read
on: we promise, it’s not as complicated as it looks.

As you learned in the previous exercise, a basic RewriteRule takes two arguments. In our example it
also received a special flag—[L] —as a third argument. We’ll discuss the meaning of these arguments
next.

The first argument of RewriteRule is a regular expression that describes the matching URLs we want
to rewrite. The second argument specifies the destination (rewritten) URL—this is not a regular
expression. So, in geek-speak, the RewriteRule line from the exercise basically says: “rewrite any
URL that matches the ̂ /Products/P([0-9]+)\.html$ pattern to

/Product.aspx?ProductID=$1 .” In English, the same line can be roughly read as: “delegate any
request to a URL that looks like /Products/P n.html to /Product.aspx?ProductID= n.”

In regular expressions, most characters, including alphanumeric characters, are read literally and simply
match themselves. Remember the first RewriteRule you’ve written in this chapter to match my-
super-product.html , which was mostly created of such “normal” characters. However, what
makes regular expressions so powerful (and sometimes complicated), are the special characters (or
metacharacters), such as ̂, . , or * , which have special meanings. Table 3-4 describes the most
frequently used metacharacters.

Table 3Table 3Table 3Table 3----4444

MetacharacterMetacharacterMetacharacterMetacharacter DescriptionDescriptionDescriptionDescription

^ Matches the beginning of the line. In our case, it will always match the
beginning of the URL. The domain name isn’t considered part of the
URL, as far RewriteRule is concerned. It is useful to think of ^ as
“anchoring” the characters that follow to the beginning of the string, that
is, asserting that they be the first part.

. Matches any single character.

* Specifies that the preceding character or expression can be repeated
zero or more times—not at all to an infinite number of times.

+ Specifies that the preceding character or expression can be repeated
one or more times. In other words, the preceding character or expression
must match at least once.

? Specifies that the preceding character or expression can be repeated
zero or one time. In other words, the preceding character or expression
is optional.

{m,n} Specifies that the preceding character or expression can be repeated
between m and n times; m and n are integers, and m needs to be lower
than n.

() The parentheses are used to define a captured expression. The string
matching the expression between parentheses can be then read as a
variable. The parentheses can also be used to group the contents
therein, as in mathematics, and operators such as * , +, or ? can then be
applied to the resulting expression.

[] Used to define a character class. For example, [abc] will match any of
the characters a, b, c . The - character can be used to define a range of
characters. For example, [a-z] matches any lowercase letter. If - is
meant to be interpreted literally, it should be the last character before] .
Many metacharacters lose their special function when enclosed between
[and] , and are interpreted literally.

[^] Similar to [] , except it matches everything except the mentioned
character class. For example, [^a-c] matches all characters except a,
b, and c .

$ Matches the end of the line. In our case, it will always match the end of
the URL. It is useful to think of it as “anchoring” the previous characters

to the end of the string, that is, asserting that they be the last part.

\ The backslash is used to escape the character that follows. It is used to
escape metacharacters when we need them to be taken for their literal
value, rather than their special meaning. For example, \. will match a
dot, rather than “any character” (the typical meaning of the dot in a
regular expression). The backslash can also escape itself—so if you
want to match C:\Windows , you’ll need to refer to it as C:\\Windows .

Using Table 3-4 as reference, let’s analyze the expression ̂/Products/P([0-9]+)\.html$. The
expression starts with the ^ character, matching the beginning of the requested URL (remember, this
doesn’t include the domain name). The characters /Products/P assert that the next characters in the
URL string match those characters.

Let’s recap: the expression ^/Products/P will match any URL that starts with /Products/P .

The next characters, ([0-9]+) , are the crux of this process. The [0-9] bit matches any character
between 0 and 9 (that is, any digit), and the + that follows indicates that the pattern can repeat one or
more times, so we can have an entire number rather than just a digit. The enclosing round parentheses
around [0-9]+ indicate that the regular expression engine should store the matching string (which will
be a digit or number) inside a variable called $1. (We’ll need this variable to compose the rewritten
URL.)

Finally, we have \.html$, which means that string should end in .html . The \ is the escaping
character that indicates that the . should be taken as a literal dot, not as “any character” (which is the
significance of the . metacharacter). The $ matches the end of the string.

The second argument of RewriteRule , /Product.aspx?ProductID=$1 , plugs the digit or
number extracted by the matching regular expression into the $1 variable. If the regular expression
matched more than one string, the subsequent matches could be referenced as $2, $3, and so on. You’ll
meet several such examples later in this book.

The second argument of RewriteRule isn’t written using the regular expression language.
Indeed, it doesn’t need to, because it’s not meant to match anything. Instead, it simply supplies the
form of the rewritten URL. The only part with a special significance here are the variables ($1, $2,
and so on) whose values are extracted from the expressions written between parentheses in the first
argument of RewriteRule.

As you can see, this rule does indeed rewrite any request for a URL that looks like
/Products/P n.html to Product.aspx?ProductID= n, which can be executed by our
Product.aspx page. The [L] makes sure that if a match is found, the rewriting rules that follow
won’t be processed.

RewriteRule /̂Products/P([0-9]+)\.html$ /Product.as px?ProductID=$1 [L]

This is particularly useful if you have a long list of RewriteRule commands, because using [L]
improves performance and prevents ISAPI_Rewrite from processing all the RewriteRule commands
that follow once a match is found. This is usually what we want regardless.

Helicon’s ISAPI_Rewrite ships with a regular expression tester application, which
allows you to verify if a certain rewriting rule matches a test string. The application
is named RXTest.exe, and is located in the product’s installation folder (by default
Program Files\Helicon\ISAPI_Rewrite\).

Rewriting Numeric URLs with Two Parameters
What you’ve accomplished in the previous exercise is rewriting numeric URLs with one parameter.
We’ll now expand that little example to also rewrite URLs with two parameters. The URLs with one
parameter that we support looks like http://seoasp/Products/P n.html . Now we’ll assume that
our links need to support links that include a category ID as well, in addition to the product ID. The new
URLs will look like:

http://seoasp/Products/C2/P1.html

The existing Product.aspx script will be modified to handle links such as:

http://seoasp/Product.aspx?CategoryID=2&ProductID=1

As a quick reminder, here’s the rewriting rule you used for numeric URLs with one parameter:

RewriteRule /̂Products/P([0-9]+)\.html$ /Product.as px?ProductID=$1 [L]

For rewriting two parameters, the rule would be a bit longer, but not much more complex:

RewriteRule /̂Products/C([0-9]+)/P([0-9]+)\.html$ @ @ta
/Product.aspx?CategoryID=$1&ProductID=$2 [L]

Let’s put this to work in a quick exercise.

Exercise: Rewriting Numeric URLs
 1. Modify your Product.aspx page that you created in the previous exercise, like this:

<%@ Page Language ="C#" %>
<! DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitiona l.dtd">

<script runat ="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 // retrieve the product ID and category ID from the query string
 string productId = Request.QueryString["ProductID"];
 string categoryId = Request.QueryString["CategoryID"];

 // use productId to customize page contents
 if (productId != null && categoryId == null)
 {
 // set the page title
 this .Title += ": Product " + productId;

 // display product details
 message.Text =
 String .Format("You selected product #{0}. Good choice!" , productId);
 }
 // use productId and categoryId to customize pa ge contents

 else if (productId != null && categoryId != nul l)
 {
 // set the page title
 this .Title +=
 String .Format(": Product {0}: Category {1}", productId, categoryId);

 // display product details
 message.Text =
 String .Format("You selected product #{0} in category #{1}. Good c hoice!" ,
 productId, categoryId);
 }
 else
 {
 // display product details
 message.Text = "Please select a product from our catalog." ;
 }

 }
</ script >

<html xmlns ="http://www.w3.org/1999/xhtml" >
<head runat ="server">
 <title >ASP.NET SEO Shop </ title >
</ head >
<body >
 <form id ="form1" runat ="server">
 <asp : Literal runat ="server" ID ="message" />
 </ form >
</ body >
</ html >

 2. Test your script with a URL that contains just a product ID, such as
http://seoasp/Products/P123456.html , to ensure that the old functionality still works.
The result should resemble Figure 3-8.

 3. Now test your script by loading
http://seoasp/Product.aspx?CategoryID=5&ProductID=9 9. You should get the
output shown in Figure 3-9.

Figure 3-9

 4. Add a new rewriting rule to the httpd.ini file as shown here:

[ISAPI_Rewrite]

Defend your computer from some worm attacks
RewriteRule .*(?:global.asa|default\.ida|root\.exe| \.\.).* . [F,I,O]

Translate my-super.product.html to /Product.aspx? ProductID=123
RewriteRule /̂my-super-product\.html$ /Product.aspx ?ProductID=123

Rewrite numeric URLs that contain a product ID
RewriteRule /̂Products/P([0-9]+)\.html$ /Product.as px?ProductID=$1 [L]

Rewrite numeric URLs that contain a product ID an d a category ID
RewriteRule /̂Products/C([0-9]+)/P([0-9]+)\.html$ @ @ta
/Product.aspx?CategoryID=$1&ProductID=$2 [L]

Note that the entire RewriteRule command and its parameters must be written on
a single line in your httpd.ini file. If you split it in two lines as printed in the
book, it will not work.

 5. Load http://seoasp/Products/C5/P99.html , and expect to get the same output as with
the previous request, as shown in Figure 3-10.

Figure 3-10

In this example you started by modifying Product.aspx to accept URLs that accept a product ID and
a category ID. Then you added URL rewriting support for URLs with two numeric parameters. You
created a rewriting rule to your httpd.ini file, which handles URLs with two parameters:

RewriteRule /̂Products/C([0-9]+)/P([0-9]+)\.html$ @ @ta
/Product.aspx?CategoryID=$1&ProductID=$2 [L]

The rule looks a bit complicated, but if you look carefully, you’ll see that it’s not so different from the
rule handling URLs with a single parameter. The rewriting rule has now two parameters—$1 is the
number that comes after /Products/C , and is defined by ([0-9]+), and the second parameter, $2, is
the number that comes after /P .

The result is that we now delegate any URL that looks like /Products/C m/P n.html to
/Product.aspx?CategoryID= m&ProductID= n.

Rewriting Keyword-Rich URLs
Here’s where the real fun begins! This kind of URL rewriting is a bit more complex, and there are more
strategies you could take. When working with rewritten numeric URLs, it was relatively easy to extract
the product and category IDs from a URL such as /Products/C5/P9.html , and rewrite the URL to
Product.aspx?CategoryID=5&ProductID=9 .

A keyword-rich URL doesn’t necessarily have to include any IDs. Take a look at this one:

http://www.example.com/Products/Tools/Super-Drill.h tml

(You met a similar example in the first exercise of this chapter, where you handled the rewriting of
http://seoasp/my-super-product.html .)

This URL refers to a product named “Super Drill” located in a category named “Tools.” Obviously, if
you want to support this kind of URL, you need some kind of mechanism to find the IDs of the category
and product the URL refers to.

One solution that comes to mind is to add a column in the product information table that associates such
beautified URLs to “real” URLs that your application can handle. In such a request you could look up
the information in the Category and Product tables, get their IDs, and use them. We demonstrate this
technique in an exercise later in this chapter.

We also have a solution for those who prefer an automated solution that doesn’t involve a lookup
database. This solution still brings the benefits of a keyword-rich URL, while being easier to
implement. Look at the following URLs:

http://www.example.com/Products/Super-Drill-P9.html
http://www.example.com/Products/Tools-C5/Super-Dril l-P9.html

These URLs include keywords. However, we’ve sneaked IDs in these URLs, in a way that isn’t
unpleasant to the human eye, and doesn’t distract attention from the keywords that matter, either. In the
case of the first URL, the rewriting rule can simply extract the number that is tied at the end of the
product name (-P9), and ignore the rest of the URL. For the second URL, the rewriting rule can extract
the category ID (-C5) and product ID (-P9), and then use these numbers to build a URL such as
Product.aspx?CategoryID=5&ProductID=9 .

This book generally uses such keyword-rich URLs, which also contain item IDs. Later in this
chapter, however, you’ll be taught how to implement ID-free keyword-rich URLs as well.

The rewrite rule for keyword-rich URLs with a single parameter looks like this:

RewriteRule /̂Products/.*-P([0-9]+)\.html?$ /Produc t.aspx?ProductID=$1 [L]

The rewrite rule for keyword-rich URLs with two parameters looks like this:

RewriteRule /̂Products/.*-C([0-9]+)/.*-P([0-9]+)\.h tml$ @@ta
/Product.aspx?CategoryID=$1&ProductID=$2 [L]

Let’s see these rules at work in an exercise.

Exercise: Rewriting Keyword-Rich URLs
 1. Modify the httpd.ini configuration file like this:

[ISAPI_Rewrite]

Rewrite numeric URLs that contain a product ID
RewriteRule /̂Products/P([0-9]+)\.html$ /Product.as px?ProductID=$1 [L]

Rewrite numeric URLs that contain a product ID an d a category ID
RewriteRule /̂Products/C([0-9]+)/P([0-9]+)\.html$ @ @ta
/Product.aspx?CategoryID=$1&ProductID=$2 [L]

Rewrite keyword-rich URLs with a product ID and a category ID
RewriteRule /̂Products/.*-C([0-9]+)/.*-P([0-9]+)\.h tml$ @@ta
/Product.aspx?CategoryID=$1&ProductID=$2 [L]

Rewrite keyword-rich URLs with a product ID
RewriteRule /̂Products/.*-P([0-9]+)\.html$ /Product .aspx?ProductID=$1 [L]

 2. Load http://seoasp/Products/Tools-C5/Super-Drill-P9.html , and voila, you
should get the result that’s shown in Figure 3-12.

Figure 3-12

 3. To test the rewrite rule that matches product keyword-rich URLs that don’t include a category, try
loading http://seoasp/Products/Super-Drill-P9.html . The result should be the
expected one.

There’s one interesting gotcha for you to keep in mind when developing web
applications, especially when they use URL rewriting. Your web browser sometimes
caches the results returned by your URLs—which can lead to painful debugging
experiences—so we recommend that you disable your browser’s cache during
developing.

You now have two new rules in your httpd.ini file, and they are working beautifully! The first rule
handles keyword-rich URLs that include a product ID and a category ID, and the second rule handles
keyword-rich URLs that include only a product ID. Note that the order of these rules is important,
because the second rule matches the URLs that are meant to be captured by the first rule. Also
remember that because we didn’t use the [I] flag, the matching is case sensitive.

The first new rule matches URLs that start with the string /Products/ , then contain a number of zero
or more characters (.*), followed by –C. This is expressed by ^/Products/.*-C . The next
characters must be one or more digits, which as a whole are saved to the $1 variable, because the
expression is written between parentheses –([0-9]+) . This first variable extracted from the URL, $1,
is the category ID.

After the category ID, the URL must contain a slash, then zero or more characters (.*), then -P , as
expressed by /.*-P . Afterwards, another captured group follows, to extract the ID of the product,

([0-9]+) , which becomes the $2 variable. The final bit of the regular expression, \.html$, specifies
the URL needs to end in .html .

The two extracted values, $1 and $2, are used to create the new URL,
/Product.aspx?CategoryID=$1&ProductID=$2 .

The second rewrite rule you implemented is a simpler version of this one.

Technical Considerations
Apart from basic URL rewriting, no matter how you implement it, you need to be aware of additional
technical issues you may encounter when using such techniques in your web sites:

* If your web site contains ASP.NET controls or pages that generate postback events that you
handled at server-side, you need to perform additional changes to your site so that it handles the
postbacks correctly.

* You need to make sure the relative links in your pages point to the correct absolute locations after
URL rewriting.

Let’s deal with these issues one at a time.

Handling Postbacks Correctly
Although they appear to be working correctly, the URL-rewritten pages you’ve loaded in all the
exercises so far have a major flaw: they can’t handle postbacks correctly. Postback is the mechanism
that fires server-side handlers as response of client events by submitting the ASP.NET form. In other
words, a postback occurs every time a control in your page that has the runat="server" attribute
fires an event that is handled at server-side with C# or VB.NET code.

To understand the flaw in our solution, add the following button into the form in Product.aspx :

<body >
 <form id ="form1" runat ="server">
 <asp : Literal runat ="server" ID ="message" />
 <asp:Button ID="myButton" runat="server" Text=" Click me!" />
 </ form >
</body>

Switch the form to Design view, and double-click the button in the designer to have Visual Web
Developer generate its Click event handler for you. Then complete its code by adding the following
line:

 protected void myButton_Click(object sender, EventArgs e)
 {
 message.Text += "
You clicked the button!" ;
 }

Alright, you have one button that displays a little message when clicked. To test this button, load
http://seoasp/Product.aspx , and click the button to ensure it works as expected. The result
should resemble that in Figure 3-16. (Note that clicking it multiple times doesn’t display additional text,

because the contents of the Literal control used for displaying the message is refreshed on every
page load.)

Figure 3-16

Now, load the same Product.aspx form, but this time using a rewritten URL. I’ll choose
http://seoasp/Products/Super-AJAX-PHP-Book-P35.html , which should be properly
handled by your existing code and rewritten to http://seoasp/Product.aspx?ProductID=35 .
Then click the button. Oops! You’ll get an error, as shown in Figure 3-17.

Figure 3-17

If you look at the new URL in the address bar of your web browser, you can intuit what happens: the
page is unaware that it was loaded using a rewritten URL, and it submits the form to the wrong URL—
in this example, http://seoasp/Products/Product.aspx?ProductID=35 . The presence of
the Products folder in the initial URL broke the path to which the form is submitted.

The new URL doesn’t exist physically in our web site, and it’s also not handled by any rewrite rules.
This happens because the action attribute of the form points back to the name of the physical page it’s
located on, which in this case is Products.aspx (this behavior isn’t configurable via properties).
This can be verified simply by looking at the HTML source of the form, before clicking the button:

<form name="form1" method="post" action="Product.aspx?ProductID=35" id="form1">

When this form is located on a page that contains folders, the action path will be appended to the path
including the folders. When URL rewriting is involved, it’s easy to intuit that this behavior isn’t what
we want. Additionally, even if the original path doesn’t contain folders, the form still submits to a
dynamic URL, rendering our URL rewriting efforts useless.

To overcome this problem, there are three potential solutions. The first works with any version of
ASP.NET, and involves creating a new HtmlForm class that removes the action attribute, like this:

namespace ActionlessForm
{
 public class Form : System.Web.UI.HtmlControls.Ht mlForm
 {
 protected override void RenderAttributes(System .Web.UI.HtmlTextWriter writer)
 {
 Attributes.Add("enctype", Enctype);
 Attributes.Add("id", ClientID);
 Attributes.Add("method", Method);
 Attributes.Add("name", Name);
 Attributes.Add("target", Target);
 Attributes.Render(writer);
 }
 }
}

If you save this file as ActionlessForm.cs , you can compile it into a library file using the C#
compiler, like this:

csc.exe /target:library ActionlessForm.cs

The default location of the .NET 2.0 C# compiler is
\windows\microsoft.net\framework\v2.0.50727\csc.exe . Note that you may need to
download and install the Microsoft .NET Software Development Kit to have access to the C# compiler.
To create libraries you can also use Visual C# 2005 Express Edition, in which case you don’t need to
compile the C# file yourself. Copying the resulted file, SuperHandler.dll , to the Bin folder of
your application would make it accessible to the rest of the application. Then you’d need to replace all
the <form> elements in your Web Forms and Master Pages with the new form, like this:

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi tional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitiona l.dtd">

<%@ Register TagPrefix="af" Namespace="ActionlessFo rm" Assembly="ActionlessForm" %>

...

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>ASP.NET SEO Shop</title>
</head>
<body>
 <af:form id="form1" runat="server">
 <asp:Literal runat="server" ID="message" />
 <asp:Button ID="myButton" runat="server" Text=" Click me!"
OnClick="myButton_Click" />

 </af:form>
</body>
</html>

Needless to say, updating all your Web Forms and Master Pages like this isn’t the most elegant solution
in the world, but it’s the best option you have with ASP.NET 1.x. Fortunately, ASP.NET 2.0 offers a
cleaner solution, which doesn’t require you to alter your existing pages, and it consists of using the
ASP.NET 2.0 Control Adapter extensibility architecture. This method is covered by Scott Guthrie in his
article at http://weblogs.asp.net/scottgu/archive/2007/02/26/t ip-trick-url-
rewriting-with-asp-net.aspx .

The last solution implies using Context.RewritePath to rewrite the current path to /? , effectively
stripping the action tag of the form. This technique is demonstrated in the case study in Chapter 14 in
Professional Search Engine Optimization with ASP.NET: A Developer's Guide to SEO, but as you’ll
see, it’s not recommended that you use it in more complex applications because of the restrictions it
implies on your code, and its potential side effects.

Absolute Paths and ~/
Another potential problem when using URL rewriting is that relative links will stop working when
folders are used. For example, a link to /image.jpg in Product.aspx would be translated to
http://seoasp/image.jpg if read from Product.aspx?ProductID=10 , or to
http://seoasp/Products/image.jpg if read through a rewritten URL such as
http://seoasp/Products/P-10.html . To avoid such problems, you should use at least one of
the following two techniques:

* Always use absolute paths. Creating a URL factory library, as shown later in this chapter, can
help with this task.

* Use the ~ syntax supported by ASP.NET controls. The ~ symbol always references the root
location of your application, and it is replaced by its absolute value when the controls are rendered
by the server.

Problems Rewriting Doesn’t Solve
URL rewriting is not a panacea for all dynamic site problems. In particular, URL rewriting in and of
itself does not solve any duplicate content problems. If a given site has duplicate content problems with
a dynamic approach to its URLs, the problem would likely also be manifest in the resulting rewritten
static URLs as well. In essence, URL rewriting only obscures the parameters—however many there are,
from the search engine spider’s view. This is useful for URLs that have many parameters as we
mentioned. Needless to say, however, if the varying permutations of obscured parameters do not dictate
significant changes to the content, the same duplicate content problems remain.

A simple example would be the case of rewriting the page of a product that can exist in multiple
categories. Obviously, these two pages would probably show duplicate (or very similar content) even if
accessed through static-looking links, such as:

http://www.example.com/College-Books-C1/Some-Book-T itle-P2.html
http://www.example.com/Out-of-Print-Books-C2/Some-B ook-Title-P2.html

Additionally, in the case that you have duplicate content, using static-looking URLs may actually
exacerbate the problem. This is because whereas dynamic URLs make the parameter values and names
obvious, rewritten static URLs obscure them. Search engines are known to, for example, attempt to
drop a parameter it heuristically guesses is a session ID and eliminate duplicate content. If the session
parameter were rewritten, a search engine would not be able to do this at all.

There are solutions to this problem. They typically involve removing any parameters that can be
avoided, as well as excluding any of the remaining the duplicate content. These solutions are explored
in depth in the chapter on duplicate content.

A Last Word of Caution
URLs are much more difficult to revise than titles and descriptions once a site is launched and indexed.
Thus, when designing a new site, special care should be devoted to them. Changing URLs later requires
one to redirect all of the old URLs to the new ones, which can be extremely tedious, and has the
potential to influence rankings for the worse if done improperly and link equity is lost. Even the most
trivial changes to URL structure should be accompanied by some redirects, and such changes should
only be made when it is absolutely necessary.

This is relatively simple process. In short, you use the URL factory that we just created to create the
new URLs based on the parameters in the old dynamic URLs. Then you employ what is called a “301-
redirect” to the new URLs. The various types of redirects are discussed in the following chapter.

So, if you are retrofitting a web application that is powering a web site that is already indexed by search
engines, you must redirect the old dynamic URLs to the new rewritten ones. This is especially
important, because without doing this every page would have a duplicate and result in a large quantity
of duplicate content. You can safely ignore this discussion, however, if you are designing a new web
site.

Summary
We covered a lot of material here! We detailed how to employ static-looking URLs in a dynamic web
site step-by-step. Such URLs are both search engine friendly and more enticing to the user. This can
accomplished through several techniques, and you’ve tested the most popular of them in this chapter. A
“URL factory” can be used to enforce consistency in URLs. It is important to realize, however, that
URL rewriting is not a panacea for all dynamic site problems—in particular, duplicate content
problems.

This article is excerpted from chapter 3 “Provocative SE-Friendly URLs” of the book Professional
Search Engine Optimization with ASP.NET: A Developer's Guide to SEO (Wrox, 2007, ISBN: 978-0-
470-13147-3) by Cristian Darie and Jaimie Sirovich. Cristian Darie is a software engineer with
experience in a wide range of modern technologies, and the author of numerous books and tutorials on
AJAX, ASP.NET, PHP, SQL, and related areas. Cristian currently lives in Bucharest, Romania,
studying distributed application architectures for his PhD. He’s getting involved with various
commercial and research projects, and when not planning to buy Google, he enjoys his bit of social life.
If you want to say “Hi,” you can reach Cristian through his personal web site at
http://www.cristiandarie.ro. Jaimie Sirovich is a search engine marketing consultant. He works with his
clients to build them powerful online presences. Officially Jaimie is a computer programmer, but he
claims to enjoy marketing much more. He graduated from Stevens Institute of Technology with a BS in

Computer Science. He worked under Barry Schwartz at RustyBrick, Inc., as lead programmer on all
eCommerce projects until 2005. At present, Jaimie consults for several organizations and administrates
the popular search engine marketing blog, SEOEgghead.com. Copyright 2007 Wiley Publishing Inc,
reprinted with permission, all rights reserved.

