Excerpted fronProfessional Search Engine Optimization with ASPLNE Developer's Guide to SE(

URL Rewriting Using
ISAPIL_Rewrite

by Cristian Darie and Jaimie Sirovich

“Click me!” If the ideal URL could speak, its speech woulgamble the communication of an
experienced salesman. It would grab your attentitin relevant keywords and a call to action; and i
would persuasively argue that one should chodsstitad of the other one. Other URLs on the pag
would pale in comparison.

URLSs are more visible than many realize, and artmuting factor in CTR. They are often cited
directly in copy, and they occupy approximately 26fthe real estate in a given search engine res
page. Apart from “looking enticing” to humans, URimist be friendly to search engines. URLs
function as the “addresses” of all content in a sib. If confused by them, a search engine spidsr
not reach some of your content in the first plddgs would clearly reduce search engine friendbnes

So let’'s enumerate all of the benefits of placiegwords in URLS:

Doing so has a small beneficial effect on deargine ranking in and of itself.

2. The URL is roughly 20% of the real estate yetiig a SERP result. It functions as a call tocac
and increases perceived relevance.

3. The URL appears in the status bar of a browbken the mouse hovers over anchor text that
references it. Again—it functions as a call to@etand increases perceived relevance.

Keyword-based URLs tend to be easier to remethba?ProductiD=5&CategorylD=2

o

Query keywords, including those in the URL, laighlighted in search result pages.
6. Often, the URL is cited as the actual anchxt that is:

http://w ww.example.com/foo.htmi

Obviously, a user is more likely to click a littka URL that contains relevant keywords, than
link that does not. Also, because keywords in antddare a decisive ranking factor, having
keywords in the URL-anchor-tewtill help you rank better for “foos.”

To sum up these benefits in one phrase:

Keyword-rich URLs are more aesthetically pleasing ad more visible, and are likely
to enhance your CTR and search engine rankings.

D

t

ult

fi

Implementing URL Rewriting

The hurdle we must overcome to support keyword-détLs like those shown earlier is that they dop
actually exist anywhere in your web site. Your siii# contains a script—named, say,
Product.aspx —which expects to receive parameters through tleeyogtring and generate content
depending on those parameters. This script wouldady to handle a request such as this:

t

http:/Mmww.example.com/Product.aspx?ProductiD=123

but your web server would normally generate a 4@dréf you tried any of the following:

http:/mww.example.com/Products/123.html
http:/mww.example.com/my-super-product.html

URL rewriting allows you to transform the URL ofcduan incoming request (which we’ll call the
original URL) to a different, existing URL (which we’ll call grewritten URL), according to a defined
set of rules. You could use URL rewriting to traorsf the previous nonexistent URLS to
Product.aspx?ProductID=123 , Whichdoesexist.

If you happen to have some experience with the Apaeeb server, you probably know that it ships|by
default with themod_rewrite module, which is the standard way to implement UWRWriting in the
LAMP (Linux/Apache/MySQL/PHP) world. That is coveren thePHP edition of this boak

Unfortunately, IIS doesn't ship by default with sue module. 1IS 7 contains a number of new features
that make URL rewriting easier, but it will takevaile until all existing IS 5 and 6 web serverdlwie
upgraded. Third-party URL-rewriting modules for BSand 6 do exist, and also several URL-rewriting
libraries, hacks, and techniques, and each of temn{or cannot) be used depending on your version
and configuration of 1S, and the version of ASPINI this chapter we try to cover the most relévan
scenarios by providing practical solutions.

To understand why an apparently easy problem—thatmlementing URL rewriting—can become g0
problematic, you first need to understand how tloegss really works. To implement URL rewriting
there are three steps:

1. Intercept the incoming request.When implementing URL rewriting, it's obvious thaiu need
to intercept the incoming request, which usuallysoto a resource that doesn’t exist on your
server physically. This task is not trivial wheruyeveb site is hosted on IIS 6 and older. There
are different ways to implement URL rewriting degierg on the version of 1IS you use (IS 7
brings some additional features over IS 5/6), d@dending on whether you implement rewriting
using an IS extension, or from within your ASP.N&dplication (using C# or VB.NET code). |n
this latter case, usually 1IS still needs to befigomed to pass the requests we need to rewrite [to
the ASP.NET engine, which doesn't usually happedédfgult.

D

2. Associate the incoming URL with an existing URL oryour server. There are various
techniques you can use to calculate what URL sHoelldaded, depending on the incoming
URL. The “real” URL usually is a dynamic URL.

3. Reuwrite the original URL to the rewritten URL. Depending on the technique used to capture
the original URL and the form of the original URlqu have various options to specify the rea|
URL your application should execute.

The result of this process is that the user requesiRL, but a different URL actually serves the
request. The rest of the article covers how to @npnt these steps using ISAPI_Rewrite by

Helicontech. For background information on how pi®cesses incoming requests, we recommend

Scott Mitchell’s article “How ASP.NET Web Pages Bmcessed on the Web Server,” located at
http://aspnet.4guysfromrolla.com/articles/011404-1. aspx .

URL Rewriting with ISAPI_Rewrite v2

Using a URL rewriting engine such as Helicon’s I$ARewrite has the following advantages over
writing your own rewriting code:

*

any supporting code.

* Task separation. The ASP.NET application worlst ps if it was working with dynamic URLSs.
Apart from the link building functionality, the ASRET application doesn’t need to be aware

the URL rewriting layer of your application.

Simple implementation. Rewriting rules are writi@ configuration files; you don't need to write

Of

* You can easily rewrite requests for resourcesdhanot processed by ASP.NET by default, stich

as those for image files, for example.

To process incoming requests, 11S works with ISARtensions, which are code libraries that process

the incoming requests. 1IS chooses the appropi$#@| extension to process a certain request

depending on the extension of the requested fieekample, an ASP.NET-enabled 1IS machine will

redirect ASP.NET-specific requests (which are tHoseaspx files, .ashx files, and so on), to the
ASP.NET ISAPI extension, which is a file namesbnet_isapi.dll

Figure 3-3 describes how an ISAPI_Rewrite fits ithte picture. Its role is to rewrite the URL of the
incoming requests, but doesn’t affect the outpuhefASP.NET script in any way.

At first sight, the rewriting rules can be added eaily to an existing web site, but in
practice there are other issues to take into consédation. For example, you'd also
need to modify the existing links within the web $& content. This is covered in
Chapter 4 of Professional Search Engine Optimizatio with ASP.NET: A
Developer’'s Guide to SEO.

User requests
hitp://www.example.com/my-super-product.html

The Internet

Internet Visitor

[1S Web Server

ISAPI Rewrite

Module

ISAPI Rewrite translates the request to
http://www.example.com/Product.aspx?Productld=123

\

Product.aspx executes ASPNET
and generates output Mu'dmﬁ

Figure 3-3

ISAPI_Rewrite allows the programmer to easily dexkaset of rules that are applied by IIS on-tge-i
to map incoming URLSs requested by the visitor toaiyic query strings sent to various ASP.NET
pages. As far as a search engine spider is cortbeimreURLS are static.

The following few pages demonstrate URL rewritimgdtionality by using Helicon’s ISAPI_Rewrite
filter. You can find its official documentation lattp://www.isapirewrite.com/docs/ . lonic’s
ISAPI rewriting module has similar functionality.

In the first exercise we'll create a simple rewritiée that translatesy-super-product.html to
Product.aspx?ProductiD=123 . This is the exact scenario that was present&ibiire 3-3.

TheProduct.aspx Web Form is designed to simulate a real produgép@he script receives a que
string parameter namédoductlD , and generates a very simple output message basbe value of
this parameter. Figure 3-4 shows the sample otityatityou’ll get by loading
http://seoasp/Product.aspx?ProductID=3

_ Y
@ ASP.NET SEO Shop: Product 3 - Windows Internet Explorer (] B [

@\»‘J - |B_ http://secasp/Product.aspx?ProductiD=3 '|""‘}| A |

p 5 Sy . 3 >
94 dar | @ ASP.NET SEO Shop: Product 3 | — B~ [k Page v (i Tools v ‘

You selected product #3. Good choice!

L

Figure 3-4

In order to improve search engine friendlinesswaeat to be able to access the same page through|a
static URL:http://seoasp/my-super-product.html . To implement this feature, we’'ll use—
you guessed it'—URL rewriting, using Helicon’s ISIARewrite.

As you know, what ISAPI_Rewrite basically doesoidrainslate an input string (the URL typed by your
visitor) to another string (a URL that can be pssmal by your ASP.NET code). In this exercise we’ll
make it rewritemy-super-product.html to Product.aspx?ProductiD=123

This article covers ISAPI_Rewrite version 2. At themoment of writing,
ISAPI_Rewrite 3.0 is in beta testing. The new versih comes with an updated syntax
for the configuration files and rewriting rules, which is compatible to that of the
Apache mod_rewrite module, which is the standard neriting engine in the Apache
world. Please visit Cristian’s web page dedicatedtthis book,

http://ww. cristiandarie.ro/ seo-asp/, for updates and additional
information regarding the following exercises.

Exercise: Using Helicon’s ISAPI_Rewrite

1. The first step is to install ISAPI_Rewrite. Ngate to
http://www.helicontech.com/download.ha&imd download ISAPI_Rewrite Lite (freeware). The
file name should be something lilsapi_rwl_x86.msi . At the time of writing, the full (not
freeware) version of the product comes in a diffepackage if you're using Windows Vista and
IIS 7, but the freeware edition is the same fopktforms.

2. Execute the MSI file you just downloaded, amatall the application using the default options jal
the way through.

If you run into trouble, you should visit the Installation section of the product’s
manual, athtt p: //wwv. i sapi rewrite. com docs/#install . Ifyourun
Windows Vista, you need certain [IS modules to benstalled in order for
ISAPI_Rewrite to function. If you configured IIS as shown in Chapter 1 of the book
Professional Search Engine Optimization with ASP.NE: A Developer's Guide to
SEO, you already have everything you need, and the itedlation of ISAPI_Rewrite
should run smoothly.

3. Make sure your IS web server is running anehaehttp:/seoasp/ web site using Visua
Web Developer. (Code samples for this demo sitenaaiable from Wrox at
http://www.wrox.com/WileyCDA/WroxTitle/productCd-09131470,descCd-
download_code.html

4. Create a new Web Form nanf&dduct.aspx in your project, with no code-behind file or
Master Page. Then modify the generated code asnsimave following code snippet.
(Remember that you can have Visual Web Developeergée théPage Load signature for you
by switching to Design view, and double-clickingeanpty area of the page or using the
Properties window.)

<%@ Page Language="C#" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi tional/EN"
"http:/Amww.w3.0rg/TR/xhtml1/DTD/xhtml1-transitiona |.dtd">
<script runat="server">
protected void Page_Load(object sender, EventArgs e)
{
/I retrieve the product ID from the query strin g
string productld = Request.QueryString['Product ID'];

/I use productld to customize page contents
if (productld != null)
{

/I set the page title
this.Title +=": Product " + productld;

I/ display product details
message.Text =
String.Format("You selected product #{0}. G ood choice!", productld);

}

else

// display product details
message.Text = "Please select a product from our catalog.”;

}
}

</script>

<html xmlIns="http:/Aww.w3.0rg/1999/xhtml" >
<head runat="server">
<titte>ASP.NET SEO Shop</title>
</head>
<body>
<form id="form1" runat="server">
<asp:Literal runat="server" ID="message" />
<fform>
</body>
</html>

5. Test your Web Form by loadihgp:/seoasp/Product.aspx?ProductID=3 . The
result should resemble Figure 3-4.

6. Let’'s now write the rewriting rule. Open tRAesgram
Files/Helicon/ISAPI_Rewrite/httpd.ini file (you can find a shortcut to this file in
Programs), and add the following highlighted liteethe file. Note the file is read-only by
default. If you use Notepad to edit it, you'll neednake it writable first.

[ISAPI_Rewrite]

Translate /my-super.product.html to /Product.aspx ?ProductiD=123

RewriteRule ~/my-super-product\.htmi$ /Product.aspx ?ProductlD=123

7. Switch back to your browser again, and thigtioadhttp://seoasp/my-super-

product.html . If everything works as it should, you should thet output that's shown in
Figure 3-5.
@& ASP.NET SEO Shop: Product 123 - Windaws Intemnet Explorer il B [|
@u - |£ http:,’fsenaspfm).r-super-prnduct.html v|"'.'?| X |
‘ §% ¢ | @ ASPINET SEO Shop: Praduct 123 | B ~ =k Page v {3 Tools ~ ”‘

You selected product #123. Good choice!

L)

Figure 3-5

Congratulations! You've just written your first reite rule using Helicon’s ISAPI_Rewrite. The free
edition of this product only allows server-wide rdimg rules, whereas the commercial edition would
allow you to use an application-specifittpd.ini configuration file, located in the root of your lwe
site. However, this limitation shouldn’t affect ydearning process.

The exercise you've just finished features a vanpiistic scenario, without much practical value—at
least compared with what you’ll learn next! Its pose was to install ISAPI_Rewrite, and to ensure
your working environment is correctly configured.

You started by creating a very simple ASP.NET Welnfthat takes a numeric parameter from the
query string. You could imagine this is a more iwed page that displays lots of details about the
product with the ID mentioned by tiReoductiD query string parameter, but in our case we’re Bim
displaying a text message that confirms the IDbeen correctly read from the query string.

Product.aspx is indeed very simple! It starts by reading thedurct 1D value:

protected void Page Load(object sender, EventArgs e)

{

/I retrieve the product ID from the query string
string productld = Request.QueryString["ProductlD"]

Next, we verify if the value we just readnisll . If that is the case, thé?roductlD doesn't exist as @
query string parameter. Otherwise, we display gpkrtext message, and update the page title, to
confirm thatProductID was correctly read:

/I use productld to customize page contents

if (productld != null)
{
/I set the page title
this .Title += ": Product " + productld;

/l display product details
message.Text =
String .Format("You selected product #{0}. Good choice!" , productld);

}

else

// display product details
message.Text = "Please select a product from our catalog.";

}

URL Rewriting and ISAPI_Rewrite

As Figure 3-3 describes, tiReoduct.aspx page is accessedter the original URL
has been rewritten. This explains wRgquest.QueryString['ProductID"]

reads the value d¢froductID from therewrittenversion of the URL. This is helpful,
because the script works fine no matter if you asedProduct.aspx directly, or if
the initial request was for another URL that wasritten toProduct.aspx

TheRequest.QueryString collection, as well as the other values you caalre
through theRequest object, work with the rewritten URL. For examplhehen
requestingny-super-product.html in the context of our exercise,
Request.RawUrl will return/Product.aspx?ProductlD=123

The rewriting engine allows you to retrieve thegorally requested URL by saving its
value to a server variable namid@iTP_X_REWRITE_URLYou can read this value
throughRequest.ServerVariables['HTTP_X_REWRITE_URL"] .This is helpful
whenever you need to know what was the originaliestinitiated by the client.

TheRequest class offers complete details about the curreqiest. The following
table describes the most commonly uBeduest members. You should visit the
documentation for the complete list, or use Ingglise in Visual Web Developer to
quickly access the class members.

Server Variable Description

Request.RawURL Returns a string representing the URL of the request
excluding the domain name, such as
/Product.aspx?ID=123 . When URL rewriting is
involved, RawURLreturns the rewritten URL.

Request.Url Similar to Request.RawURL , except the return value
is a Uri object, which also contains data about the
request domain.

Request.PhysicalPath Returns a string representing the physical path of
the requested file, such as
C:\seoasp\Product.aspx

Request.QueryString Returns a NameValueCollection object that
contains the query string parameters of the request.
You can use this object’s indexer to access its
values by name or by index, such as in
Request.QueryString[0] or
Request.QueryString[ProductID]

Request.Cookies Returns a NameValueCollection object containing
the client’s cookies.

Request.Headers Returns a NameValueCollection object containing

the request headers.

Request.ServerVariables Returns a NameValueCollection object containing
IIS variables.

Request.ServerVariables[H Returns a string representing the originally

TTP_X_REWRITE_URL] requested URL, when the URL is rewritten by
Helicon’s ISAPI_Rewrite or IIRF (lonic ISAPI
Rewrite).

After testing thaProduct.aspx ~ works when accessed using its physical name
(http://seoasp/Product.aspx?ProductID=123), we moved on to access this same script,
through a URL that doesn’t physically exist on yearver. We implemented this feature using
Helicon’s ISAPI_Rewrite.

As previously stated, the free version of Helicdi$&PI_Rewrite only supports server-wide rewritin
rules, which are stored in a file namtpd.ini in the product’s installation foldeYRrogram
Files\Helicon\ISAPI_Rewrite). This file has a section namp8API_Rewrite] , usually at
the beginning of the file, which can contain URWriing rules.

We added a single rule to the file, which trangatguests témy-super-product.htmi to
/Product.aspx?ProductiD=123 . The line that precedes tRewriteRule line is a comment;
comments are marked using theharacter at the beginning of the line, and anerigd by the parser:

Translate my-super.product.html to /Product.aspx? ProductiD=123
RewriteRule ~/my-super-product\.htmi$ /Product.aspx ?ProductiD=123

In its basic formRewriteRule takes two parameters. The first paramdtcribeghe original URL
that needs to be rewritten, and the second spgeifit is should be rewritten to. The pattern that

describes the form of the original URL is delimiteg® and$, which mark the beginning and the en
of the matched URL. The pattern is written usiagular expressionsvhich you learn about in the ne
exercise.

In case you were wondering why the ml extension in the rewrite rule has been written as

\. ht m , we will explain it now. In regular expressions-e-firogramming language used to
describe the original URL that needs to be rewmittdhe dot is a character that has a special
significance. If you want that dot to be read disesal dot, you need to escape it using the
backslash character. As you'll learn, this is a gexh rule with regular expressions: when special
characters need to be read literally, they neebe@scaped with the backslash character (which is
a special character in turn—so if you wanted toaibackslash, it would be denoted &3.

At the end of a rewrite rule you can also add anmare flag arguments, which affect the rewriting
behavior. For example, tlig] flag, demonstrated in the following example, sfiesithat when a
match is found the rewrite should be performed imiately, without processing any further
RewriteRule entries:

RewriteRule ~/my-super-product\.htmi$ /Product.aspx ?ProductiD=123 [L]

but

These arguments are specific to RevriteRule
general. Table 3-1 lists the possiBewriteRule

command, and not to regular expressions in
arguments. The rewrite flags must always be plg

in square brackets at the end of an individual.rule

Table 3-1

aced

RewriteRule Option | Significance

Description

| Ignore case

The regular expression of the RewriteRule
and any corresponding RewriteCond
directives is performed using case-insensitive
matching.

F Forbidden

In case the RewriteRule regular expression
matches, the web server returns a 404 Not
Found response, regardless of the format
string (second parameter of RewriteRule)
specified. Read Chapter 4 for more details
about the HTTP status codes.

L Last rule

If a match is found, stop processing further
rules.

N Next iteration

Restarts processing the set of rules from the
beginning, but using the current rewritten URL.
The number of restarts is limited by the value
specified with the RepeatLimit directive.

Next iteration of the
same rule

NS

Restarts processing the rule, using the
rewritten URL. The number of restarts is limited
by the value specified with the RepeatLimit
directive, and is calculated independently of the
number of restarts counted for the N directive.

P Proxy

Immediately passes the rewritten URL to the
ISAPI extension that handles proxy requests.
The new URL must be a complete URL that
includes the protocol, domain name, and so on.

R Redirect

Sends a 302 redirect status code to the client
pointing to the new URL, instead of rewriting
the URL. This is always the last rule, even if
the L flag is not specified.

RP Permanent redirect

The same as R, except the 301 status code is
used instead.

u Unmangle log

Log the new URL as it was the originally
requested URL.

Normalize

Normalize the URL before processing by
removing illegal characters, and so on, and
also deletes the query string.

CL Lowercase

Changes the rewritten URL to lowercase.

CuU Uppercase

Changes the rewritten URL to uppercase.

Also, you should know that althougtewriteRule is arguably the most important directive that yo
can use for URL rewriting with Helicon’s ISAPI_Rete, it is not the only one. Table 3-2 quickly
describes a few other directives. Please visiptioduct's documentation for a complete reference.

c

Table 3-2

Directive Description

RewriteRule This is the directive that allows for URL rewriting.

RewriteHeader A generic version of RewriteRule that can rewrite any HTTP
headers of the request. RewriteHeader URL is the same as
RewriteRule

RewriteProxy Similar to RewriteRule , except it forces the result URL to be
passed to the ISAPI extension that handles proxy requests.

RewriteCond Allows defining one or more conditions (when more
RewriteCond entries are used) that must be met before the
following RewriteRule , RewriteHeader , or RewriteProxy
directive is processed.

Introducing Regular Expressions

Before you can implement any really useful rewrities, it's important to learn about regular
expressions. We'll teach them now, while discus$8%P1_Rewrite, but regular expressions will alsp
be needed when implementing other URL-related taskashen performing other kinds of string
matching and parsing—so pay attention to this nedter

Many love regular expressions, whereas othersthata. Many think they're very hard to work with,
whereas many (or maybe not so many) think theyp&ee of cake. Either way, they're one of those
topics you can'’t avoid when URL rewriting is inveld. We'll try to serve a gentle introduction to the
subject, although entire books have been writtethersubject. The Wikipedia page on regular
expressions is great for background information
(http://fen.wikipedia.org/wiki/Regular_expression).

Appendix A of this book is a generic introduction b regular expressions. You
should read it if you find that the theory in the following few pages—which is a fast-
track introduction to regular expressions in the caitext of URL rewriting—is too
sparse. For comprehensive coverage of regular exmgions we recommend Andrew

Watt's Beginning Regular Expressions (Wrox, 2005).

A regular expression (sometimes referred to Bgay is a special string that describes a fttern
With regular expressions you can define rules tiatich groups of strings, extract data from strings
and transform strings, which enable very flexiblel @omplex text manipulation using concise rules
Regular expressions aren’t specific to ISAPI_Reyiitr even to URL rewriting in general. On the
contrary, they've been around for a while, and tteeynplemented in many tools and programming
languages, including the .NET Framework—and implicASP.NET.

To demonstrate their usefulness with a simple eXamye’ll assume your web site needs to rewrite
links as shown in Table 3-3.

Table 3-3
Original URL Rewritten URL
Products/P1.html Product.aspx?ProductID=1
Products/P2.html Product.aspx?ProductID=2
Products/P3.html Product.aspx?Product|D=3
Products/P4.html Product.aspx?ProductiD=4

If you have100,000 products, without regular exgiess you'd be in a bit of a trouble, because you
need to write just as many rules—no more, no Mes.don’t want to manage a configuratiie with
100,000 rewrite rulesThat would be unwieldy.

However, if you look at the Original URL column thie table, you'll see that all entries follow the
samepattern And as suggested earlier, regular expressions@ae to rescue! Patterns are useful
because with a single pattern you can match adkieally infinite number of possible input URLS, sq
you just need to write a rewriting rule for evéypeof URL you have in your web site.

In the exercise that follows, we’ll use a regulgpression that match&soducts/P n.html , and
we'll use ISAPI_Rewrite to translate URLSs that niaticat pattern to
Product.aspx?ProductID= n. This will implement exactly the rules describadliable 3-3.

Exercise: Working with Regular Expressions
1. Open théttpd.ini configuration file and add the following rewritimgle to it.
[ISAPI_Rewrite]

Defend your computer from some worm attacks

RewriteRule .*(?:global.asa|default\.idajroot\.exe| \\).*. [F,O]
Translate my-super.product.html to /Product.aspx? ProductiD=123
RewriteRule ~/my-super-product\.htmi$ /Product.aspx ?ProductlD=123

Rewrite numeric URLs
RewriteRule ~/Products/P([0-9]+)\.ntml$ /Product.as px?ProductiD=$1 [L]

2. Switch back to your browser, and Idutb://secasp/Products/P1.html . If everything
works as planned, you will get the output that'svgh in Figure 3-7.

- 5 3
@ ASP.NET SEO Shop: Product 1 - Windows Internet Explorer [l B [

@L/ |] hitp://seoasp/Products/PLhtml - |42] x|

A ! | @ e 1 \. . ¥
‘ 9F dar | @ ASP.NET SEO Shop: Product1 | B~ [k Page v (i Tools v ‘

You selected product #1. Good choice!

2

Figure 3-7

3. You can check that the rule really works, efegriDs formed of more digits. Loading

http://seoasp/Products/P123456.html would give you the output shown in Figure 3
8.
(& ASP.NET SEO Shop: Product 123456 - Windows Internet Explorer o[[|
@L/ = | @] httpi//seassp/Products/P123456 htm >[4 | x|
‘ % 4fr | @ ASP.NET SEO Shop: Product 123456 B ~ |2k Page v {3 Tools ~ ”‘

You selected product #123456. Good choice!

2

Figure 3-8

Note that by default, regular expression matchinggise sensitive. So the regular expression in your
Rewr i t eRul e directive will match Pr oduct s/ P123. ht m , but will not match

/ product s/ p123. ht m , for example. Keep this in mind when performingr yests. To make the
matching case sensitive, you need to usgltheRewr i t eRul e flag, as you'll soon learn.

Congratulations! The exercise was quite shortybutve written your first “real” regular expression
Let's take a closer look at your new rewrite rule:

RewriteRule ~/Products/P([0-9]+)\.ntml$ /Product.as px?ProductiD=$1 [L]

If this is your first exposure to regular expressioit must look scary! Just take a deep breathread
on: we promise, it's not as complicated as it looks

As you learned in the previous exercise, a bRsigriteRule takes two arguments. In our example
also received a special flagk} —as a third argument. We'll discuss the meaninthe§e arguments
next.

The first argument dRewriteRule is a regular expression that describeslagchingURLs we want
to rewrite. The second argument specifies the rlsnin (ewritten) URL—this isnot a regular
expression. So, in geek-speak, ReavriteRule line from the exercise basically says: “rewritg an
URL thatmatcheghe”/Products/P([0-9]+)\.htmI$ pattern to

t

/Product.aspx?ProductiD=$1 . In English, the same line can be roughly read'@slegate any
request to a URL that looks likBroducts/P n.html to/Product.aspx?ProductID= n.”

In regular expressions, most characters, includipganumeric characters, are read literally angblsin|
match themselves. Remember the fitetvriteRule you've written in this chapter to mataty-
super-product.html , which was mostly created of such “normal” chazextHowever, what
makes regular expressions so powerful (and somstim@plicated), are the special characters (or
metacharacters such a, . , or*, which have special meanings. Table 3-4 descthmmost
frequently used metacharacters.

Table 3-4

Metacharacter | Description

R Matches the beginning of the line. In our case, it will always match the
beginning of the URL. The domain name isn’t considered part of the
URL, as far RewriteRule is concerned. It is useful to think of ~ as
“anchoring” the characters that follow to the beginning of the string, that
is, asserting that they be the first part.

Matches any single character.

* Specifies that the preceding character or expression can be repeated
zero or more times—not at all to an infinite number of times.

+ Specifies that the preceding character or expression can be repeated
one or more times. In other words, the preceding character or expression
must match at least once.

? Specifies that the preceding character or expression can be repeated
zero or one time. In other words, the preceding character or expression
is optional.

{m,n} Specifies that the preceding character or expression can be repeated
between m and n times; m and n are integers, and m needs to be lower
than n.

O The parentheses are used to define a captured expression. The string
matching the expression between parentheses can be then read as a
variable. The parentheses can also be used to group the contents
therein, as in mathematics, and operators such as *, +, or ? can then be
applied to the resulting expression.

[1 Used to define a character class. For example, [abc] will match any of
the characters a, b, c. The - character can be used to define a range of
characters. For example, [a-z] matches any lowercase letter. If - is
meant to be interpreted literally, it should be the last character before] .
Many metacharacters lose their special function when enclosed between
[and], and are interpreted literally.

] Similarto [] , except it matches everything except the mentioned
character class. For example, [*a-c] matches all characters except a,
b, and c.

$ Matches the end of the line. In our case, it will always match the end of

the URL. It is useful to think of it as “anchoring” the previous characters

to the end of the string, that is, asserting that they be the last part.

\ The backslash is used to escape the character that follows. It is used to
escape metacharacters when we need them to be taken for their literal
value, rather than their special meaning. For example, \. will match a
dot, rather than “any character” (the typical meaning of the dot in a
regular expression). The backslash can also escape itself—so if you
want to match C:\Windows , you'll need to refer to it as C:\\Windows

Using Table 3-4 as reference, let's analyze theesgion/Products/P([0-9]+)\.htmI$. The
expression starts with tiecharacter, matching the beginning of the requedted (remember, this
doesn’t include the domain name). The charad¢Remlucts/P assert that the next characters in th
URL string match those characters.

Let’s recap: the expressiéfProducts/P will match any URL that starts witlProducts/P

The next character0-9]+) , are the crux of this process. TiBe9] bit matches any character
between 0 and 9 (that is, any digit), and-titeat follows indicates that the pattern can repeator
more times, so we can have an entire number rdiharjust a digit. The enclosing round parenthes
around[0-9]+ indicate that the regular expression engine shstalc the matching string (which wi
be a digit or number) inside a variable caltdd (We’'ll need this variable to compose the rewnitte
URL.)

Finally, we hava.html$, which means that string should endhtm| . The\ is the escaping
character that indicates that thehould be taken as a literal dot, not as “anyatter” (which is the
significance of the metacharacter). THematches the end of the string.

The second argument BewriteRule , /Product.aspx?ProductID=$1 , plugs the digit or
number extracted by the matching regular expredstorthe$l variable. If the regular expression
matched more than one string, the subsequent nsatcld be referenced 82, $3, and so on. You'll
meet several such examples later in this book.

The second argument®Réwr i t eRul e isn’t written using the regular expression langeag

Indeed, it doesn'’t need to, because it's not meamtatch anything. Instead, it simply supplies the
form of the rewritten URL. The only part with aapésignificance here are the variablegl($2,

and so on) whose values are extracted from theesgums written between parentheses in the first
argument oRewr i t eRul e.

As you can see, this rule does indeed rewrite agyest for a URL that looks like

/Products/P n.html to Product.aspx?Product|D= n, which can be executed by our
Product.aspx page. ThgL] makes sure that if a match is found, the rewritinigs that follow
won't be processed.

RewriteRule ~/Products/P([0-9]+)\.ntml$ /Product.as px?ProductiD=$1 [L]

This is particularly useful if you have a long liftRewriteRule commands, because usihg
improves performance and prevents ISAPI_Rewritenfppocessing all thRewriteRule commands
that follow once a match is found. This is usuatlyat we want regardless.

£S

Helicon’s ISAPI_Rewrite ships with a regular expresion tester application, which
allows you to verify if a certain rewriting rule matches a test string. The application
is namedRXTest . exe, and is located in the product’s installation foler (by default
Program Fil es\ Hel i con\| SAPI _Rewrite\).

Rewriting Numeric URLs with Two Parameters

What you've accomplished in the previous exercisewriting numeric URLs with one parameter.

We'll now expand that little example to also rewriiRLs with two parameters. The URLs with one
parameter that we support looks |ikp://seoasp/Products/P n.html . Now we’ll assume tha
our links need to support links that include a gatg ID as well, in addition to the product ID. Thew

URLs will look like:

http://seoasp/Products/C2/P1.html

The existingProduct.aspx script will be modified to handle links such as:

http://seoasp/Product.aspx?CategorylD=2&ProductID=1

As a quick reminder, here’s the rewriting rule yaed for numeric URLs with one parameter:

RewriteRule ~/Products/P([0-9]+)\.ntml$ /Product.as px?ProductiD=$1 [L]

For rewriting two parameters, the rule would bétddmger, but not much more complex:

RewriteRule ~/Products/C([0-9]+)/P([0-9]+)\.htmI$ @ @ta
/Product.aspx?CategorylD=$1&ProductiD=$2 [L]

Let’s put this to work in a quick exercise.

Exercise: Rewriting Numeric URLs

1. Modify yourProduct.aspx page that you created in the previous exercigetliis:

<%@ Page Language ="C#" %>
<! DOCTYPHtmI PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/EN"
"http:/Amww.w3.org/TR/xhtml1/DTD/xhtml1-transitiona l.dtd">

<script runat ="server'>
protected void Page Load(object sender, EventArgs e)

{
I/ retrieve the product ID and category ID from the query string
string productld = Request.QueryString["ProductID"];
string categoryld = Request.QueryString["CategorylD"]

/I use productld to customize page contents
if (productld != null && categoryld == null)

/I set the page title

this .Title += ": Product " + productld;
/I display product details
message.Text =
String .Format("You selected product #{0}. Good choice!" , productld);

/I use productld and categoryld to customize pa ge contents

t

else if (productld != null && categoryld != nul)}

/I set the page title
this .Title +=

String .Format(": Product {0}: Category {1}", productld, categoryld);
/l display product details
message.Text =

String .Format("You selected product #{0} in category #{1}. Good ¢ hoice!"
productld, categoryld);
}
else

/I display product details

message.Text = "Please select a product from our catalog.” ;
}
}
</ script >
<html xmins ="http:/AMww.w3.0rg/1999/xhtml" >

<head runat ="server>
<tite >ASP.NET SEO Shop </ title >
</ head >
<body >
<form id ="form1l" runat ="server'>
<asp: Literal runat ="server" ID ="message" />
</ form >
</ body >
</ html >

2. Test your script with a URL that contains jagiroduct ID, such as
http://seoasp/Products/P123456.html , to ensure that the old functionality still work
The result should resemble Figure 3-8.

3. Now test your script by loading
http://seoasp/Product.aspx?CategorylD=5&Product|D=9 9. You should get the
output shown in Figure 3-9.

. 5 .
& ASP.NET SEQ Shop: Product 99: Category 5 - Windows Intemet Explorer [':' [+ ﬁ:h,l
@ .LJI - |1é_ http://secasp/Product.aspx?CategorylD=58ProductiD=99 - | v"vy| X |

| @ e pee
i | @ ASP.NET SEO Shop: Product 99: Category 5 | | * |557 Page v iGk-Tools » J

You selected product #99 in category #5. Good choice!

2 =]

Figure 3-9

4. Add a new rewriting rule to thretpd.ini file as shown here:
[ISAPI_Rewrite]

Uy

Defend your computer from some worm attacks

RewriteRule .*(?:global.asa|default\.idajroot\.exe| \).*. [F1,O]

Translate my-super.product.html to /Product.aspx? ProductiD=123
RewriteRule ~/my-super-product\.htmi$ /Product.aspx ?ProductlD=123

Rewrite numeric URLSs that contain a product ID

RewriteRule ~/Products/P([0-9]+)\.ntml$ /Product.as px?ProductiD=$1 [L]
Rewrite numeric URLS that contain a product ID an d a category ID
RewriteRule */Products/C([0-9]+)/P([0-9]+)\.htmI$ @ @ta

/Product.aspx?CategorylD=$1&ProductiD=$2 [L]

Note that the entireRewr i t eRul e command and its parameters must be written on
a single line in yourht t pd. i ni file. If you split it in two lines as printed in the
book, it will not work.

5. Loadhttp://seocasp/Products/C5/P99.html , and expect to get the same output as with
the previous request, as shown in Figure 3-10.

N
& ASP.NET SEQ Shop: Product 99: Category 5 - Windows Internet Explorer ;I_J‘:' e
@ e |E_ http://seoasp/Products/C5/P39. htm| - | 3 | K |
n 5 -y A y . ¥
94 dar | @ ASP.NET SEO Shop: Product 99: Category 5 | — » |isk Page v (Tools ‘

You selected product #99 in category #5. Good choice!

W

Figure 3-10

In this example you started by modifyiRgoduct.aspx to accept URLs that accept a product ID and
a category ID. Then you added URL rewriting suppartJRLs with two numeric parameters. You
created a rewriting rule to youttpd.ini file, which handles URLs with two parameters:

RewriteRule ~/Products/C([0-9]+)/P([0-9]+)\.htmI$ @ @ta
[/Product.aspx?CategorylD=$1&ProductiD=$2 [L]

The rule looks a bit complicated, but if you loakefully, you'll see that it's not so different frothe
rule handling URLs with a single parameter. Therigng rule has now two parameter$i-is the
number that comes afté®roducts/C , and is defined bg[0-9]+), and the second paramet&2, is

the number that comes afier.

The result is that we now delegate any URL thak$dike/Products/C mP n.html to
/Product.aspx?CategorylD= m&ProductiD=n.

Rewriting Keyword-Rich URLs
Here’s where the real fun begins! This kind of URlvriting is a bit more complex, and there are mpre
strategies you could take. When working with retritnumeric URLS, it was relatively easy to extract
the product and category IDs from a URL suclPasducts/C5/P9.html , and rewrite the URL to
Product.aspx?CategorylD=5&Product|D=9

A keyword-rich URL doesn’t necessarily have to it any IDs. Take a look at this one:
http:/Amww.example.com/Products/Tools/Super-Dril.h tml

(You met a similar example in the first exercisahi$ chapter, where you handled the rewriting of
http://seoasp/my-super-product.html)

This URL refers to a product named “Super Drilltdded in a category named “Tools.” Obviously, i
you want to support this kind of URL, you need sdamal of mechanism to find the IDs of the categpry
and product the URL refers to.

c

One solution that comes to mind is to add a colimthe product information table that associatehs
beautified URLSs to “real” URLSs that your applicatican handle. In such a request you could look Up
the information in the Category and Product talges their IDs, and use them. We demonstrate this
technique in an exercise later in this chapter.

We also have a solution for those who prefer aoraated solution that doesn’t involve a lookup
database. This solution still brings the benefita keyword-rich URL, while being easier to
implement. Look at the following URLSs:

http:/mww.example.com/Products/Super-Drill-P9.html
http:/mww.example.com/Products/Tools-C5/Super-Dril [-P9.html

These URLs include keywords. However, we've snedksdn these URLS, in a way that isn’t
unpleasant to the human eye, and doesn’t disttaetteon from the keywords that matter, eitherthe
case of the first URL, the rewriting rule can signpktract the number that is tied at the end of the
product name-P9), and ignore the rest of the URL. For the secoRdthe rewriting rule can extrag
the category ID-C5) and product ID-f9), and then use these numbers to build a URL ssich a
Product.aspx?CategorylD=5&Product|D=9

—

This book generally uses such keyword-rich URb&also contain item IDs. Later in this
chapter, however, you'll be taught how to impleniBrfree keyword-rich URLs as well.

The rewrite rule for keyword-rich URLs with a siegbarameter looks like this:
RewriteRule ~/Products/.*-P([0-9]+)\.html?$ /Produc taspx?ProductiD=$1 [L]
The rewrite rule for keyword-rich URLs with two @aneters looks like this:

RewriteRule ~/Products/.*-C([0-9]+)/.*-P([0-9]+)\.h tml$ @ @ta
/Product.aspx?CategorylD=$1&ProductiD=$2 [L]

Let’'s see these rules at work in an exercise.

Exercise: Rewriting Keyword-Rich URLs
1. Modify thehttpd.ini configuration file like this:
[ISAPI_Reuwrite]

Rewrite numeric URLS that contain a product ID
RewriteRule ~/Products/P([0-9]+)\.htmI$ /Product.as px?ProductiD=$1 [L]

Rewrite numeric URLSs that contain a product ID an d a category ID
RewriteRule ~/Products/C([0-9]+)/P([0-9]+)\.htmI$ @ @ta
/Product.aspx?CategorylD=$1&ProductiD=$2 [L]

Rewrite keyword-rich URLs with a product ID and a category ID
RewriteRule ~/Products/.*-C([0-9]+)/.*-P([0-9]+)\.h tml$ @ @ta
/Product.aspx?CategorylD=$1&ProductiD=$2 [L]

Rewrite keyword-rich URLs with a product ID

RewriteRule ~/Products/.*-P([0-9]+)\.ntmI$ /Product .aspx?ProductiD=$1 [L]
2. Loadhttp://seoasp/Products/Tools-C5/Super-Drill-P9.html , and voila, you
should get the result that's shown in Figure 3-12.
& ASP.NET SEQ Shop: Praduct 9: Category 5 - Windows Internet Explorer ﬂl&y
@ A=) ~ |Q http://seoasp/Products/Tools-C5/5uper-Drill-PS.html o | ‘:'?| A |
e | @ ASP.NET SEO Shop: Product 9: Category 5 . v |:s Page = ({F Tools s

You selected product #9 in category #5. Good choice!

Figure 3-12

3. Totest the rewrite rule that matches prodagtudord-rich URLs that don’t include a category,
loadinghttp://seoasp/Products/Super-Drill-P9.html . The result should be the
expected one.

There’s one interesting gotcha for you to keep in imd when developing web
applications, especially when they use URL rewritig. Your web browser sometimes
caches the results returned by your URLs—which catead to painful debugging
experiences—so we recommend that you disable yourdwser’'s cache during
developing.

You now have two new rules in yohitpd.ini file, and they are working beautifully! The finstle
handles keyword-rich URLs that include a productl a category ID, and the second rule handle
keyword-rich URLSs that include only a product IDotl that the order of these rules is important,
because the second rule matches the URLSs thateaptrto be captured by the first rule. Also
remember that because we didn’t use[the flag, the matching is case sensitive.

The first new rule matches URLSs that start withdteng/Products/ , then contain a number of ze
or more characters*(), followed by—C. This is expressed ByProducts/.*-C . The next
characters must be one or more digits, which ab@enare saved to tl$i variable, because the

expression is written between parenthegfs9}+) . This first variable extracted from the URR1,
is the category ID.

After the category ID, the URL must contain a s|dblen zero or more characters), then-P, as
expressed by*-P . Afterwards, another captured group follows, ttrast the 1D of the product,

[ry

([0-9]+) , which becomes th#&2 variable. The final bit of the regular expressiommi$, specifies
the URL needs to end ihtml

The two extracted value$l and$2, are used to create the new URL,
/Product.aspx?CategorylD=$1&ProductiD=$2

The second rewrite rule you implemented is a simgesion of this one.

Technical Considerations

Apart from basic URL rewriting, no matter how youglement it, you need to be aware of additiong
technical issues you may encounter when using attmiques in your web sites:

* If your web site contains ASP.NET controls or paghat generate postback events that you
handled at server-side, you need to perform additichanges to your site so that it handles th
postbacks correctly.

* You need to make sure the relative links in ypages point to the correct absolute locations &
URL rewriting.

Let's deal with these issues one at a time.

Handling Postbacks Correctly

Although they appear to be working correctly, tHeLlrewritten pages you've loaded in all the
exercises so far have a major flaw: they can’t lmpdstbacks correctly. Postback is the mechanisn
that fires server-side handlers as response oft@ieents by submitting the ASP.NET form. In other|
words, a postback occurs every time a control ur yage that has thenat="server" attribute
fires an event that is handled at server-side @ittor VB.NET code.

To understand the flaw in our solution, add théofeing button into the form iProduct.aspx

<body >
<formid ="form1" runat ="server'>
<asp: Literal runat ="server" ID ="message" />
<asp:Button ID="myButton" runat="server" Text=" Click me!" />
</ form >
</body>

Switch the form to Design view, and double-click thutton in the designer to have Visual Web
Developer generate iGlick event handler for you. Then complete its codeduireg the following
line:

protected void myButton_Click(object sender, EventArgs e)

{

message.Text +="
You clicked the button!"

}

Alright, you have one button that displays a litttessage when clicked. To test this button, load
http://seoasp/Product.aspx , and click the button to ensure it works as exgacthe result
should resemble that in Figure 3-16. (Note thatkatig it multiple times doesn't display additioriakt,

fter

because the contents of thieeral ~ control used for displaying the message is refrdsin every
page load.)

el B]

-4] x|

& ASP.NET SEQ Shop - Windows Internet Explorer

P
] - s f
@\‘J |5’E_ http://secasp/Product.aspx

s W Y »
S e | @ ASP.NET SEQ Shop | B ~ |5k Page = {C Tooks ~

Please select a product from our catalog.
You clicked the button! | Click me!

L

Figure 3-16

Now, load the sameroduct.aspx form, but this time using a rewritten URL. I'll cbse
http://seoasp/Products/Super-AJAX-PHP-Book-P35.html , Which should be properly
handled by your existing code and rewrittemttp://seoasp/Product.aspx?ProductlD=35

Then click the button. Oops! You'll get an erras,shown in Figure 3-17.

& The resource cannot be found. - Windows Internet Explorer @%
@_J - |5’E_ http://secasp/Products/Product.aspx?ProductiD=35 2 | “'?| X |

= T Y 9 »
S hE | @ The resource cannot be found. | | B ~ [P Page v (£ Tools v

Server Error in '/' Application.

The resource cannot be found.

Description: HTTP 404. The resource you are looking for {or one of its dependencies) could have been removed, had its name changed, or is
temporarily unavailable. Please review the following URL and make sure that it is spelled correcthy.

Requested URL: /Products/Product aspx

Version Information: Microsoft NET Framework Version:2.0.50727.312; ASP.NET Version:2.0.50727.212

W

Figure 3-17

If you look at the new URL in the address bar afiryaveb browser, you can intuit what happens: thg
page is unaware that it was loaded using a rewrifiieL, and it submits the form to the wrong URLH
in this examplehttp://seoasp/Products/Product.aspx?ProductID=35 . The presence of
theProducts folder in the initial URL broke the path to whitte form is submitted.

The new URL doesn’t exist physically in our wekesind it's also not handled by any rewrite rules
This happens because tietion attribute of the form points back to the namehef physical page it’
located on, which in this caseRsoducts.aspx (this behavior isn’t configurable via properties).
This can be verified simply by looking at the HTMburce of the form, before clicking the button:

<form name="form1" method="post" acti on="Product . aspx?Pr oduct | D=35" id="form1">

1y

12}

When this form is located on a page that contaitdefs, the action path will be appended to tha pat
including the folders. When URL rewriting is inveld, it's easy to intuit that this behavior isn’tath
we want. Additionally, even if the original pathedm't contain folders, the form still submits to a
dynamic URL, rendering our URL rewriting effortsalisss.

To overcome this problem, there are three potestilaitions. The first works with any version of
ASP.NET, and involves creating a nelimlForm class that removes tlaetion attribute, like this:

namespace ActionlessForm

public class Form : System.Web.UI.HtmIControls.Ht miForm

{
protected override void RenderAttributes(System Web.UlLHtmITextWriter writer)

Attributes.Add("enctype”, Enctype);
Attributes.Add("id", ClientID);
Attributes.Add("method", Method);
Attributes.Add("name", Name);
Attributes.Add("target", Target);
Attributes.Render(writer);

}
}
}

If you save this file aéctionlessForm.cs , you can compile it into a library file using tk&
compiler, like this:

csc.exe ftargetlibrary ActionlessForm.cs

The default location of the .NET 2.0 C# compiler is
\windows\microsoft.net\framework\v2.0.50727\csc.exe . Note that you may need to
download and install the Microsoft .NET SoftwarevBl®pment Kit to have access to the C# compiler.
To create libraries you can also use Visual C# ZXJiress Edition, in which case you don't need td
compile the C# file yourself. Copying the resulfiel, SuperHandler.dll , to theBin folder of
your application would make it accessible to thst of the application. Then you'd need to repldte a
the<form> elements in your Web Forms and Master Pages hétméw form, like this:

<%@ Page Language="C#" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi tional/EN"
"http:/Amww.w3.0rg/TR/xhtml1/DTD/xhtml1-transitiona |.dtd">
<%@ Register TagPrefix="af' Namespace="ActionlessFo rm" Assembly="ActionlessForm" %>

<html xmlIns="http:/Aww.w3.0rg/1999/xhtml" >
<head id="Head1" runat="server">
<title>ASP.NET SEO Shop<ftitle>
</head>
<body>
<af:form id="form1" runat="server">
<asp:Literal runat="server" ID="message" />
<asp:Button ID="myButton" runat="server" Text=" Click me!"
OnClick="myButton_Click" />

</af:form>
</body>
</html>

Needless to say, updating all your Web Forms anstdidages like this isn’t the most elegant safutio
in the world, but it's the best option you havehtSP.NET 1.x. Fortunately, ASP.NET 2.0 offers a|
cleaner solution, which doesn’t require you torayteur existing pages, and it consists of using the
ASP.NET 2.0 Control Adapter extensibility architeet. This method is covered by Scott Guthrie in|his
article athttp://weblogs.asp.net/scottgu/archive/2007/02/26/t ip-trick-url-
rewriting-with-asp-net.aspx

The last solution implies usingontext.RewritePath to rewrite the current path 1@ , effectively
stripping theaction tag of the form. This technique is demonstratetthéncase study in Chapter 14 jin
Professional Search Engine Optimization with ASPLNA Developer's Guide to SE®ut as you'll
see, it’s not recommended that you use it in morepiex applications because of the restrictions it
implies on your code, and its potential side effect

Absolute Paths and ~/

Another potential problem when using URL rewritisghat relative links will stop working when
folders are used. For example, a linkitoage.jpg in Product.aspx would be translated to

http://seoasp/image.jpg if read fromProduct.aspx?ProductIiD=10 , orto
http://seoasp/Products/image.jpg if read through a rewritten URL such as
http://seoasp/Products/P-10.html . To avoid such problems, you should use at le@estod

the following two techniques:

* Always use absolute paths. Creating a URL factinary, as shown later in this chapter, can
help with this task.

* Use the~ syntax supported by ASP.NET controls. The ~ synaboays references the root
location of your application, and it is replaceditsyabsolute value when the controls are rendered
by the server.

Problems Rewriting Doesn’t Solve

URL rewriting is not a panacea for all dynamic giteblems. In particular, URL rewriting in and of
itself does not solve any duplicate content prokslelfna given site has duplicate content probleritk W
a dynamic approach to its URLSs, the problem woildely also be manifest in the resulting rewritten
static URLs as well. In essence, URL rewriting oobgscures the parameters—however many therg are,
from the search engine spider’s view. This is usiefiuURLs that have many parameters as we
mentioned. Needless to say, however, if the vargiergnutations of obscured parametdosot dictate
significant changes to the content, the same datglicontent problems remain.

A simple example would be the case of rewritingghge of a product that can exist in multiple
categories. Obviously, these two pages would priglsiow duplicate (or very similar content) even|i
accessed through static-looking links, such as:

=

http:/mww.example.com/College-Books-C1/Some-Book-T itle-P2.html
http:/mww.example.com/Out-of-Print-Books-C2/Some-B ook-Title-P2.html

Additionally, in the case that you have duplicatetent, using static-looking URLs may actually
exacerbate the problem. This is because whereasrdgrURLs make the parameter values and names
obvious, rewritten static URLs obscure them. Seardjines are known to, for example, attempt to
drop a parameter it heuristically guesses is d@@e#d and eliminate duplicate content. If the $&ss
parameter were rewritten, a search engine wouldaatble to do this at all.

There are solutions to this problem. They typicailyolve removing any parameters that can be
avoided, as well as excluding any of the remaitirgduplicate content. These solutions are explorgd
in depth in the chapter on duplicate content.

A Last Word of Caution

URLs are much more difficult to revise than titeesd descriptions once a site is launched and imtlexe
Thus, when designing a new site, special care dhmibevoted to them. Changing URLSs later requijres
one to redirect all of the old URLs to the new qgmnasich can be extremely tedious, and has the

potential to influence rankings for the worse ihdamproperly and link equity is lost. Even the mos
trivial changes to URL structure should be accormgzhhy some redirects, and such changes should
only be made when it is absolutely necessary.

This is relatively simple process. In short, yoe tisee URL factory that we just created to creage th
new URLs based on the parameters in the old dynbRics. Then you employ what is called a “301
redirect” to the new URLs. The various types ofirects are discussed in the following chapter.

So, if you are retrofitting a web application tiepowering a web site that is already indexeddayreh
engines, you must redirect the old dynamic URLh&onew rewritten ones. This is especially

important, because without doing this every pagal@vbave a duplicate and result in a large quantity
of duplicate content. You can safely ignore thscdssion, however, if you are designing a new wel
site.

Summary

We covered a lot of material here! We detailed howmploy static-looking URLSs in a dynamic web
site step-by-step. Such URLSs are both search effig@melly and more enticing to the user. This can
accomplished through several techniques, and yde'sted the most popular of them in this chapter. A
“URL factory” can be used to enforce consistencyRLs. It is important to realize, however, that
URL rewriting is not a panacea for all dynamic giteblems—in particular, duplicate content
problems.

This article is excerpted from chapter 3 “ProvoeatiSE-Friendly URLs” of the bodkrofessional
Search Engine Optimization with ASP.NET: A Devafsgguide to SEQWrox, 2007, ISBN: 978-0-
470-13147-3) by Cristian Darie and Jaimie Sirovi€lristian Darie is a software engineer with
experience in a wide range of modern technologied,the author of numerous books and tutorials jon
AJAX, ASP.NET, PHP, SQL, and related areas. Cngtiarently lives in Bucharest, Romania,
studying distributed application architectures fas PhD. He’s getting involved with various
commercial and research projects, and when notmtamto buy Google, he enjoys his bit of social. lif
If you want to say “Hi,” you can reach Cristian tmgh his personal web site at
http://www.cristiandarie.ro. Jaimie Sirovich is earch engine marketing consultant. He works with| hi
clients to build them powerful online presencedictally Jaimie is a computer programmer, but he
claims to enjoy marketing much more. He graduatechfStevens Institute of Technology with a BS|in

Computer Science. He worked under Barry SchwarRuatyBrick, Inc., as lead programmer on all
eCommerce projects until 2005. At present, Jaimiesalts for several organizations and administrates
the popular search engine marketing blog, SEOEgdwean. Copyright 2007 Wiley Publishing Inc,
reprinted with permission, all rights reserved.

